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An Explicit Modular Equation in Two Variables for Q(V/3) 
By Harvey Cohn and Jesse Deutsch* 

Abstract. A system of modular equations of norm 2 had been found for the Hilbert 
modular function field of Q(vX') in an earlier issue of this journal. Here an analogous 
system is found for Q(x/3) but with the help of MACSYMA. There are special difficulties 
in the fact that two spaces of Hilbert modular functions exist for Q(s/3) that can be 
interchanged by the modular equations. The equations are also a remarkable example of 
hidden symmetries in the algebraic manifold V2 which is defined in C4 by the modular 
equation. 

1. Introduction. We extend to the field Q(v'3) the modular equation theory 
that was developed in Cohn [1] for the field Q(v'2). The underlying theory of forms 
and functions was developed by Gundlach [5] so a rapid resume should suffice. 

We first define the modular transformation for Q(v"3) restricting ourselves to 
the symmetric case. We now need not one but two spaces: 

(1. la) H+: QSz > 0Q Sz' >O.1 

(1. b) H-: QSz > O. QSz' < O. 

The ring of integers for Q(x/F) is 

(1.2) Z[v] = {a = a+bv; a,b EZ}. 

Here a' denotes the conjugate (a - byr3-) and the units are generated by 

(1.3) =2+ 3 

Each of the spaces H+ or H- is invariant under the extended Hilbert modular 
group for Q(V3-), namely for 

(1.4) a,O,-y,6EZ[v/E-], a6-fAy=,u, uEZ, 

with the corresponding action 

(1.4a) F = {z -- (az + 3)/(-yz + 6), z' -- (aiz' + /')/(-Yz' + 6')} 

augmented by the operation of symmetry 

(1.4b) H+: z -z', z --z . 
(1.4c) H-: z )-z', z' Z. 
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Next, (symmetric) modular forms are defined for each degree t E Z+ as those 
functions G such that 

(1.5) G 
az + 1 z-C+zGz') (1(Z + Z + + I[Z + 6)(Y Z/ + 6/)]t 

equally for both H+ and H- also with the appropriate symmetry (1.4b,c). The 
corresponding linear spaces of modular forms are called Mt+ and M-. 

The (symmetric) modular forms are generated by Eisenstein series 

(1.6) Gt(z, z') = E [(-YZ + 6)Qby'z + 6/)]Vt, t > 1, 

summed over all pairs (-y, 6) 5$ (0, 0) restricted so that repetitions by unit multiples 
are excluded; i.e., if (-y, 6) is present then (w-y, w6) is not present in the sum for the 
unit w :$ 1. The series converges absolutely for t > 2, but for t = 1 or 2, special 
summation procedures are required (with which we shall not concern ourselves). 

This theory is expounded in detail in Gundlach [5] and we are concerned only 
with his main result. 

THEOREM 1 . 7. The ring of modular forms for H+ under the symmetric group 
r is generated by G2, G3, G4, while the ring of modular forms for H- is generated 
by G1, G4, G6 . In either case, the field of modular functions is generated by G2/G4 
and GC/3G6 

2. Normalized Generators. We choose generators of the rings 

M+ =M+ and M= M- 
t>1 t>1 

so as to produce Fourier series with low coefficients missing, just as in the case 
of modular forms over Q(v"2); see Cohn [1], Gundlach [5], and Nagaoka [6]. The 
Fourier series have terms corresponding to a E Z[V/'], i.e., a = a + bv'3, a, b E Z. 
The exponential functions are 

(2.1) exp 27ri -qbra 

where 

(2.2) q = exp (ri (z + z')), r = exp(ri(Z-z')/- ). 

The spaces H+ and H- differ by the restriction on those a which have correspond- 
ing terms in the Fourier series expansion: 

(2.3a) H+:a = Oorao > 0 > a' (4= 1 atI < byx3), 

(2.3b) H-: a= ora>Oa'>O a > a bI V"). 

We can redefine G(z, z') by a multiplicative constant so we have new Eisenstein 
series for H+ and H-: 

(2.4) G+ = A? + BJ E3 qbra st1 (a + bW), t > 1 
C1! 

summed over the restriction (2.3a,b); see Gundlach [5]. Here, 

(2.5) sG(a) = E IN(A)Iu (sgn(N(A)))u+1, u > 0O 
I 
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where the summation is over all ideals (A) a with a (but not A) restricted by 
(2.3a,b). The constants are found by hand calculation to be the same for (At+, Bt+) 
and (A-, BT). They are as follows: 

t 1 2 3 4 5 6 
(2.6) At 1 1 1 23 1 1681 

Bt 12 24 36 240 12 504 

Actually, (A+, B+) is omitted because so(a) -0 if N(a) < 0. 
We now define normalized generators of Mt+ and M- for t even. We define for 

H+ 

H2+ = G+ = 1 + 24q(3/r + 4 + 3r) + O(q2), 

(2.7a) H4+ = (23 (G+)2 -G+)/1152 = q(l/r-2 + r) + 0(q2), 

H6+ = ((G+ )3 - (G+ )2 - 432H2+H4+)/1728 = q + 0(q2). 

More detailed expansions are given in Table IA. 
Likewise, for H- we define 

{H- = GC- = (G0 )2 = 1 + 24r + 0(r2), 

(2.7b) HZ = (23 (Gf ) - G)/864 = r + 0(r2), 

H6- = (3055(GQ )6 - 279(GC )2(GC-) + 2G-)/311040 = r2 + O(q2). 

Again more complete expansions are given in Table IB. 
The modular function field is generated by 

(2.8a) H+: U = (H2+)2/H4+, V = H2+H4+/H6+1 

(2.8b) H-: X = (H2-)2/HZ, Y = H2-HZ/H6 . 

As the expansions suggest, the q-r coefficients of H2#, Hi, H6 are all integers 
(see Deutsch [4]). The proof is similar to the case of Q(V' ) (see Cohn [2] and 
Nagaoka [6]), but requires the Hecke transformation. 

3. Modular Equations of Norm 2. We now consider a modular function 

(3.1) w = f/g, 

where f and g are nonproportional modular forms of degree t (actually, t = 4 or 
6). If we transform z by a factor of norm -2, 

(3.2a) z -- z(1 + v3), z' --+z'(1 - 1), 
by analogy with the rational theory and the theory for Q(V'-) (see Cohn [1]), there 
are a total of three conjugates to the transform (3.2a). Namely (3.2a) itself and 

(3.2b) Z z/ (1 + v3) , z' z'/ (1 -V) 

(3.2c) Z (z + 1)/(1 + V), z' -* (z' + 1 )/(1-V). 

In either case, H+ and H- are interchanged, so w acquires three conjugates defined 
over H- or H+ as the case may be. We note the transformations in terms of q and 
r from (3.2a,b,c) by referring to (2.1): 

(3.3a) q qr3, r qr, 

(3.3b) q - r3/2 q-1/2 r -+ r-1/2 q1/2 
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Thus, for a form f = f[q, r] we consider three conjugates 

(3.4a) foo = f[qr3, qr], 

(3.4b) fo = f [r3/2 q- 1/2, r- 1/2 q1/2], 

(3.4c) fi = f[ [r3/2 q-1/2 r-r1/2 q1/2], 

and under (3.2a,b,c) the function w in (3.1) has three conjugates 

(3.5) w = {f00 / goo, fo / go, fi / gi }. 

We now define a "norm" and "trace" as modular forms in the alternate space as 
follows: 

(3.6a) N(f) = foo fo fl, 

(3.6b) T(f,g) = foogogi + fogoogi + f ggoogo 

The trace follows the pattern of the Hecke transformation of index 1 + v'3 (see 

Cohn and Deutsch [3]). So finally, the modular equation for wi is 

(3.7) N(g) 3 - w2T(f, g) + zwT(g, f) - N(f) = 0. 

Note the desired norms and traces are of degree 12 for X or U and degree 18 for V 
or Y. 

It is not true that under any multiplication z - z ,u z, - piu' z' the corresponding 
equation for tiv would have coefficients in M+ (or M-). This is true in the present 
case because symmetry is maintained by z -- z(1 + A3-), z' - z'(1 - x/h) since 

X- is a unit. The same is true for z -- zJf, z' -z'/3, but the modular 

equation of norm three exceeds the time and space limitations of the system. It is 
likewise infeasible to extend these results to Q(V7.5) because the minimum (nonunit) 
norm is four. 

4. Derivation of the Modular Equations. We calculated four modular 

equations for combinations of f and g making up the generating functions in 

(2.8a,b): 

(4.1a) M+: f = (H2+)2, 9 = H+ (f/g = U), 

(4.1b) M-: f = (HI-)2, g = HZ (f/g =X), 
(4.1c) M+: f = H+ g H+ (f/g = 

(4.1d) M-: f = HI Hj, g = H& (f/g = Y). 

Series expansions for H+, H+, and H+ were calculated up to q9, and for G7, HI , 
HZ, H6[ up to r11 using MACSYMA. The functions in the positive spaces had 

q-r expansions with 156 terms while in the negative spaces there were 78. 

Next, the series expansions for the basis elements 

(4.2) Mi = ((H ?)t (H)i , (H?)k, 2i + 4j + 6k = t) 

were calculated for t = 12 and 18. It was seen that 

f dim(M+) = dim(M- ) = 7, 

)dim(M+ dim(M- ) = 12. 
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A total of 13 test coefficients (i.e., coefficients of qbra) for positive expansions 
and 14 coefficients for negative expansions were identified. Hence it became an 
exercise in linear algebra to get the coefficients of N(g), N(f), T(f, g), T(g, f) in 
terms of the appropriate bases. For example we found these norm forms: 

(4.4a) N(H4+) = (Hj-)21 
(4.4b) N(HZ) = -8(H6+)2 - 6H2+H4+H6+ + 32(H4+)3 -(H2+)2(H4+)2 

N(H6+) =-8(HT )3 + 3 H2- HZj (H-)2 - 1 (H2- )3 (H6 )2 
(4.4c) -2(H4) H6 + 1 6 

6 
1 

(4.4d) N(Hj ) = H2+(H4+)4 + 4(H4+)3H6+. 

With fi (U, X, Y) the modular equation for M+, f2(X, U, V) the one for M-, 
f3(V, X, Y) the one for M+ and f4(Y, U, V) for M- , the equations were determined 
to be as in Table II. The norms (4.4a,b,c,d) are in evidence in the cubic powers in 
each function. 

5. Symmetries of the Modular Equations. It is the nature of modular 
functions that a symmetry is built into the modular equations. This occurs because 
(3.2a) and (3.2b) are inverse operations. 

For example, under (3.2a,b,c) U - U, V - V we must solve 

(5.1a) f1(U X, Y) = f3 (V,X, Y) = 0 

for U and V. This leads to three values of each corresponding to (3.2a,b,c), and 
this makes nine pairs. As in the case of Q(x/2) (see Cohn [1]), only three pairs can 
be admissible, namely those that satisfy either of these two equations 

(5.1b) f2(XiU, V) = f4(YU, V) = 0. 

Likewise, if under (3.2a,b,c) X -- X, Y - Y, we would be solving (5.2a) with 
confirmation by (5.2b) 

(5.2a) f2 (X, UI V) = f4(Y, U V) = 0, 

(5.2b) f (U. X, Y) = f3 (V, XY ) = 0. 

Analogously, in the case of Q(x/2) the same phenomenon occurred but fi =f2 

and f= f4 since only the space H+ was used. 
The four equations (5.1a,b) define V2, a two-dimensional manifold in the four- 

space of (X, Y, U, V). (Actually any three of the four must define the same mani- 
fold.) If we think of V2 as defined by an ideal in Q[X, Y, U,V], then fi, f2,f3, f4 

are elements of the ideal characterized not only by the absence of one variable, but 
by the fact that one of the remaining three variables is of degree two while the 
others are of degree three. Thus, 

(5.3) degy f1 = degxf3 = degv f2 = deguf4 = 2. 

In some sense, this characterization must be unique. 
Very likely there is a purely algebraic way of seeing the fact that fl, f2j,ff4 

determine the same manifold V2 as any three of them, and indeed the manifold V2 
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is of codimension 2 (not 3)! Perhaps a more powerful algebraic system will enable 
us to demonstrate this later on; hopefully also for the system for Q(V'2). 

For the time being, we submit numerical values which satisfy fj = 0 for j = 

1,2,3,4. These values can be used to check the equations in the event that any 
future research requires the reader to correctly copy the four equations! 

(5.4) (X, Y, U, V) = (4,5,53.9834902447, -4.0280639935). 

The values U and V are the real roots of the equations 

U3 - 62U2 + 82748U - 4443664 = 0, 

637V3 + 8356V2 + 56816V + 134912 = 0. 

It would be better to find exact rational or radical check values consisting of 
fixed points, as was possible for the case of Q(V/2), but this is much more difficult 
for Q(v?) and perhaps will be the subject of later computations. 

6. The Computation. The computation was made using MACSYMA on 
three different computer systems, the City College VAX running under UNIX, 
the University of Arizona Mathematics Department SUN work station also with 
UNIX, and the University of Arizona's RVAX operating under VMS. Eventually, 
all calculations done at the University of Arizona were produced on the RVAX as 
it ran 50 to 100 times faster than the SUN. For example, the SUN was barely 
able to calculate the product of two conjugates of a modular form (3.4a,b,c) before 
running out of space. Indeed, sometimes the machine did run out of space. When 
it succeeded in such a calculation it would take approximately 1/2 hour of CPU 
time. 

RVAX had no trouble working with the conjugates of a modular form (3.4a,b,c). 
Generally, one to one and a half megabytes of "list" space was sufficient for the 
calculations. For example, to obtain the matrix of test coefficients of M+8, it took 
RVAX 2.72 minutes with 1.05 megabytes of "list" space. For f = H2 H7 and 
g = Hj it took a total of 9.4 minutes of CPU time in three different MACSYMA 
sessions to find the test coefficients of N(g) , N(f ) , T(f , g) and T(g, f ), with only 
one megabyte of "list" space on the RVAX and a modestly increased "fixnum" area. 
The rest of the calculation to find f4(Y, U, V) took an insignificant amount of time, 
just 25.5 seconds. 

Finally a SPITBOL program was designed to enhance the appearance of the 
"ground out" modular forms in Tables IA and IB. 

The authors wish to thank the Scientific Computing Laboratory of City College 
(CUNY), the Mathematics Department of the University of Arizona and the Com- 
puter Center of the University of Arizona for making MACSYMA available on their 
respective machines. 
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TABLE IA** 
Computer printout of basis forms in M+ 

-G+ 1 + q{72, (96)} 

+ q2 {96,360,288, (672)} 

+ q3{72,288,936,576,1008, (960)} 

+ q4{672,576,1512,1344,2016,1152, (2976)} 

+ q5{288,1008,1344,1872,1440,3456,1728,2736, (2496)} 

+ q6f360,960,2016,1440,4680,2016,4032,3744,5040,2592, (6720)} 

+ q7f96,1008,1152,3456,2016,3600,3648,4464,3168,6912, 

4032,5328, (4800)} 

+ q8{576,2976,1728,4032,3648,6120,4032,9408,4032, 

8928,5952,8064,4608, (12192)} 

+ q9{936,1152,2736,3744,4464,4032,8712,4320,7056, 

7488,7920,5472,13104,5760,9576, (8736)} 

G3+ = 1 - q{108, (288)} 
- q2{288, 1836,4320, (3744)} 

- q3{108,4320,7884,19008,18360, (23616)} 
- q4{3744,19008,29484,48960,56160, 79488, (59040)} 
- q5{4320,18360,48960,67608,125280,103680,181440,147960, (180288)} 
- q6f1836,23616,56160,125280,134028,247968,247104, 

315360,312120,412128, (307008)} 
- q7{288,18360,79488,103680,247968,259416,394560, 

401976,617760,456192,734400,575640, (691776)} 
- q8f19008,59040,181440,247104,394560,471852,734400, 

636480,1003968,885600,1071936,1033344,1313280, (943776)} 
- q9f7884,79488,147960,315360,401976,734400,637740, 

1153440,1016280,1387584,1283256,1855008,1340280, 

2056320,1568268, (1913184)} 

** Here the power series term qb {at,ati, ...,ai, (ao)} denotes Et= atqbri, making use of 
symmetry at = a-t. 
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G+= 23 + q{2160, (6720)} 

+ q2{6720,140400,319680, (490560)} 

+ q3{2160, 319680,1635120, 2920320,4747680, (4905600)} 

+ q4f490560,2920320,8987760,14770560,23336640,24917760, (31456320)} 

+ q5{319680,4747680,14770560,33752160,49291200,80559360, 

85898880,109412640, (105006720)} 

+ q6f 140400,4905600,23336640,49291200,106282800,137229120, 

213183360,241997760,308599200,294010560, (358108800)} 

+ q7{6720,4747680,24917760,80559360,137229120,254124000, 

340394880,490281120,539542080,735920640,702656640, 

840278880, (790608000)} 

+ q8f2920320,31456320,85898880,213183360,340394880, 

575218800,702656640,1078250880,1117791360,1496422080, 

1525319040,1818996480,1672289280, (2013264960)} 

+ q9f1635120,24917760,109412640,241997760,490281120, 

702656640,1192062960,1376481600,1971375840,2210682240, 

2797264800,2807300160,3593993760,3276460800,3829448880, 

(3576189120)} 

H4+= + q{1, (-2)} 

- q2{2 4, -10, (8)} 

+ q3{1, 10,21, -28, -10, (12)} 

- q4{8,28,48, -20, -40,56, (-160)} 

+ q5{10, -10, 20,170,50, -240,300, -130, (-340)} 

- q6{4, -12, -40, -50,84,362,112, -210, -40, -186, (-48)} 

- q7{2,10,56,240,362, -626, -260,442,130, -672,100, -410, (1252)} 

- q8 {28, -160, -300,112, -260, -448,100, -80,4,800, -884224,800, (128)} 

+ q9{21, -56, -130,210, -442, -100, -855,390,770, -588, 

- 1066, -146, -210,1640, -131, (1386)} 
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H+= q + q2{1, -12,3, (-8)} 

+ q3{3 96, -42, -96, (330)} 

- q4{8, 42,48,322, -360, 756, (-160)} 

+ q5 {3, -96, -322,480,1215, -480, -798,96, (4634)} 

- q6{12, -330, -360, -1215,2652, -165, -3408,1353,360, -651, (9552)} 

+ q7{1, -96, -756, -480,165, -3936,1142,3936, -11199, -10176, 

2106,10752, (338)} 
- q8 {42, -160, 798, -3408, -1142,7104, -2106, -9488, -16218, 

- 14304, -21230,13152,21168, (-32896)} 

+ q9{96, -756,96, -1353,3936,2106,22176, -12147, -6240, 

- 48642,17376, -6231, -21408, -42372, -16032, (105147)} 

TABLE IB*** 

Computer printout of basis forms in M- 

G= 1 + 12r 
+ r2{12, (12)} 

+ 12r3 

+ r4{12,24, (12)} 

+ r5{24,0, (24)} 

+ r6{12,0,0, (12)} 
+ r7{ 12,0,24,0, (24)} 

+ r8{ 12,24,24,24, (12)} 

+ 12r9 

+ r10{24, 24, 24,0, 24, (24)} 

+ rl1{24,0,24,0,24,0, (0)} 

Here the power series term rb {at, at, ..., a,(ao)} denotes j atraqi, making use 
of symmetry at = at. 
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G-= 23 + 240r 

+ r2{240, (17520)} 

+ r3{60480, (181680)} 

+ r4{ 17520,527520, (1123440)} 

+ r5{527520,2877120, (3750240)} 

+ r6{ 181680,3931200,8951040, (13262640)} 

+ r7{240,2877120,12156960,26282880, (28236000)} 

+ r8{ 1123440,12156960,38508960,54475680, (71902320)} 

+ r9{60480,8951040,44150400,81768960,132935040, (132451440)} 

+ r'0{3750240,38508960,93364320,187012800,219041760, (273767520)} 

+ r"{527520,26282880,93364320,224259840,310807200, 

443620800, (425813760)} 

G- =1681 + 504r 

+ r2{504, (532728)} 

+ r3{4058208, (29883672)} 

+ r4{532728,187132176, (545530104)} 

+ r5{187132176,2678616864, (4921875504)} 

+ r6{29883672,4159663200,19805530752, (31587041304)} 

+ r7{504,2678616864,34949354832,107049273408, (142367526000)} 

+ r8{545530104,34949354832,197798710032,425676536208, 

(558622843128) } 
+ r9{4058208,19805530752,239637182400,791515839744, 

1506788281152, (1764601070904)} 

+ r'0{4921875504,197798710032,1044828083376,2745582285600, 

4328019490032, (5202422407728)} 

+ r11{187132176,107049273408,1044828083376,3814466173056, 

7754664733200,11890620957600, (13072624338816)} 



AN EXPLICIT MODULAR EQUATION FOR Q(V3/) 567 

HZj =r+r2{1, (4)} 

- r3 {24, (-21)} 

+ r4{4, -10, (-80)} 

- r5{10, -120, (-170)} 

+ r6{21, 96, -240, (84)} 

+ r7{1,120, -130, -336, (626)} 

- r8{80,130,40,442, (-64)} 

- r9{24,240, -144, -672, -240, (855)} 

+ r?1{170, -40, 410, -480, 770, (680)} 

- r 1{10, 336, -410,672,1066, -600, (-1200)} 

H-= r2 _ r3{2, (8)} 

+ r4{1,8,1(36)} 
+ r5{8, -38, (-40)} 

- r6{8, -8, -40, (35)} 

- r7{38,8,172, (-328)} 

+ r8{36, -8,286, -328, (720)} 

- r9{2, -40,84, -848, -68, (1848)} 

- r10{40, -286,896,2152, -520, (-1594)} 

+ r11{8, -172, -896, 3112, -1448, -766, (1336)} 

TABLE I I 
Computer printouts of the modular equations 
fi(u,xy), f2(xuv) , f3(v,x,y) , f4(yuv) 

fi (u, x, y) = (-x3 - 144X2 - 5184x)y2 + (-3456x2 - 248832x)y - 2985984x 

+ ((2X2 + 288x + 10368)y2 + (-207X2 - 9504x)y + 62208x)u 

+ ((-X2 + 78x)y - 432x)u2 + xu3 

f2(x, u, v) = (-u3 + 864u2 - 186624u)v2 + (3456u2 - 1492992u)v - 2985984u 

+ ((-87u2 + 2592u)v2 + (-414u2 - 20736u)v - 124416u)x 

+ ((u2 - 72u)v2 + (4U2 - 432u)v - 1728u)x2 

+ ((-u + 32)v2 -6uv-8u)x3 
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f3(v, x, y) = (16x2 + 1152x)y + 27648x + (-20xy2 + (20x2 + 96x)y + 13824x)v 

+ (4y3 + (-12x + 96)y2 + (8x2 - 160x)y + 2304x)v2 

+ (y3 + (-2x + 24)y2 + (2 - 24x)y + 128x)v3 

fh(y, u, v) = (U2 - 464u + 13824)v3 + (6u2 - 4320u + 55296)v2 

+ (8u2 - 13824u)v - 13824u 

+ ((71u + 1728)v3 + (360u + 6912)v2 + 432uv)y 

+ ((-u + 72)v3 + (-2u + 288)v2)y2 + (v3 + 4v2)y3 
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